For Yeast Protein Hubs, More Data Means More Connections
نویسنده
چکیده
October 2006 | Volume 4 | Issue 10 | e359 | e364 Fusion of two plasma membranes is central to exocytosis, the process by which a cell secretes neurotransmitters, digestive enzymes, and other products. If you believe the simple diagrams in introductory biology textbooks, you’d think this fusion occurs as soon as two membranes touch. Not so—in fact, membrane fusion requires interaction among a complex set of proteins in the membranes, collectively termed SNARE proteins. SNAREs are assisted by a second group, called SM proteins, which bind to them and help promote their functions. Among the SM proteins, one, called Munc18-1, has stood out as something of an oddball. When the others bind to their respective SNAREs, they leave the SNAREs in an open conformation, available for interacting with others and forming the complexes that drive membrane fusion. In contrast, Munc18-1 appears to fold its SNARE, syntaxin 1, into a closed conformation, making it unavailable for binding to other SNAREs. But this result has been obtained only in membranefree solutions, and the behavior of membrane-bound Munc18-1 has been a mystery. A new study by Felipe Zilly, Thorsten Lang, and colleagues resolves the mystery of the syntaxin–Munc181 interaction and explains how their binding promotes interactions with other SNAREs. The authors performed their experiments in sheets of membrane, prepared by disrupting cells, which mimic the native biochemical environment of Munc18-1 much better than membrane-free solutions. First they showed that syntaxin must be able to close to bind Munc18-1; when mutated to prevent closure, syntaxin bound virtually no Munc18-1. But proteins are fl exible molecules, and it is possible that syntaxin needn’t stay closed while it is bound to Munc181, and that adopting a more open conformation while bound would promote its linkage to other SNAREs. To test this possibility, the authors added another SNARE, synaptobrevin, to the mix. Synaptobrevin is a known partner for syntaxin, and it has been shown that the addition of synaptobrevin drives syntaxin (without Munc18-1) in conjunction with SNAP-25 (the third SNARE essential for neuroexocytosis) into SNARE complexes. They reasoned that adding synaptobrevin to syntaxin–Munc18-1 would not drive syntaxin into SNARE complexes if syntaxin remained closed. Conversely, if syntaxin could partially open while bound to Munc181, it would be able to interact with synaptobrevin and join the SNARE complex. And this is what they found—when synaptobrevin was added, syntaxin unhitched from Munc18-1 and joined the SNARE complex, involving most likely also SNAP-25. Finally, by deleting SNAP-25, the authors verifi ed its essential role in displacing Munc181 from syntaxin, suggesting there is an intermediate complex formed by Munc18-1, syntaxin, synaptobrevin, and SNAP-25. These results not only shed light on the actual function of Munc18-1, but allow the development of a more coherent picture of SM proteins, in which Munc18-1 is no longer the oddball. They also illustrate the complex interactions among proteins that bring about such a “simple” process as membrane fusion.
منابع مشابه
Protein evolution in yeast transcription factor subnetworks
When averaged over the full yeast protein-protein interaction and transcriptional regulatory networks, protein hubs with many interaction partners or regulators tend to evolve significantly more slowly due to increased negative selection. However, genome-wide analysis of protein evolution in the subnetworks of associations involving yeast transcription factors (TFs) reveals that TF hubs do not ...
متن کاملGenome-wide system analysis reveals stable yet flexible network dynamics in yeast.
Recently, important insights into static network topology for biological systems have been obtained, but still global dynamical network properties determining stability and system responsiveness have not been accessible for analysis. Herein, we explore a genome-wide gene-to-gene regulatory network based on expression data from the cell cycle in Saccharomyces cerevisae (budding yeast). We recove...
متن کاملMolecular Basis for Evolving Modularity in the Yeast Protein Interaction Network
Scale-free networks are generically defined by a power-law distribution of node connectivities. Vastly different graph topologies fit this law, ranging from the assortative, with frequent similar-degree node connections, to a modular structure. Using a metric to determine the extent of modularity, we examined the yeast protein network and found it to be significantly self-dissimilar. By ortholo...
متن کاملDomain distribution and intrinsic disorder in hubs in the human protein-protein interaction network.
Intrinsic disorder and distributed surface charge have been previously identified as some of the characteristics that differentiate hubs (proteins with a large number of interactions) from non-hubs in protein-protein interaction networks. In this study, we investigated the differences in the quantity, diversity, and functional nature of Pfam domains, and their relationship with intrinsic disord...
متن کاملDynamic modular architecture of protein-protein interaction networks beyond the dichotomy of ‘date' and ‘party' hubs
The protein-protein interaction (PPI) networks are dynamically organized as modules, and are typically described by hub dichotomy: 'party' hubs act as intramodule hubs and are coexpressed with their partners, yet 'date' hubs act as coordinators among modules and are incoherently expressed with their partners. However, there remains skepticism about the existence of hub dichotomy. Since differen...
متن کاملCharacterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus
Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2006